

河北省地方计量校准规范

JJF (冀) 188—2021

总烃、甲烷和非甲烷总烃分析仪校准规范

Calibration Specification for Total Hydrocarbon Methane and Non-Methane Total Hydrocarbon Analyzers

2021-02-04 发布

2021-05-01 实施

河北省市场监督管理局发布

总烃、甲烷和非甲烷总烃分析仪 校准规范

JJF(冀) 188—2021

Calibration Specification for Total Hydrocarbon

Methane and Non-Methane Total Hydrocarbon Analyzers

归口单位: 河北省市场监督管理局

起草单位: 河北省计量监督检测研究院

白洋淀流域生态环境监测中心

青岛崂应海纳光电环保集团有限公司

本规范起草人:

李志丰 (河北省计量监督检测研究院)

王 龙 (河北省计量监督检测研究院)

郝广民 (白洋淀流域生态环境监测中心)

刘子优 (河北省计量监督检测研究院)

王园园 (河北省计量监督检测研究院)

石 霜 (青岛崂应海纳光电环保集团有限公司)

目 录

引言	i (Ⅱ)	
1	范围(1)	
2	引用文件(1)	
3	术语和计量单位(1)	
4	概述(1)	
5	计量特性(1)	
6	校准条件(1)	
6.1	校准环境条件(1)	
6.2	测量标准及其他设备(2)	
7	校准项目和校准方法	
7.1	示值误差(2)	
7.2	重复性(2)	
7.3	转化效率(3)	
7.4	响应时间	
8	校准结果表达	
9	复校时间间隔	
附表	录 A 示值误差不确定度评定示例(5)	
附表	录 B 总烃、甲烷和非甲烷总烃分析仪校准记录(参考)(10)	
附表	录 C 总烃、甲烷和非甲烷总烃分析仪校准证书(内页)格式(参考)(12))

引 言

本规范依据 JJF1001-2011《通用计量术语及定义》、JJF1071-2010《国家计量校准规范编写规则》和 JJF1059.1-2012《测量不确定度评定与表示》等规范进行编写。

本规范的制订,参考了 HJ 1012-2018《环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》、DB 13/2322-2016《工业企业挥发性有机物排放控制标准》、DB 11/T 1367-2016《固定污染源废气 甲烷 总烃 非甲烷总烃的测定 便携式氢火焰离子化检测器法》中的部分内容。

本规范为首次发布。

总烃、甲烷和非甲烷总烃分析仪校准规范

1 范围

本规范适用于测量原理为火焰离子化(FID)法的总烃、甲烷和非甲烷总烃气体分析仪(以下简称分析仪)的校准。

2 引用文件

本规范引用了下列文件:

HJ 1012-2018 环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法

凡是注明日期的引用文件,仅注日期的版本适用于本规范。

3 术语和计量单位

转化效率 conversion efficiency [HJ 1012-2018, 3.7]

使用催化氧化装置把除甲烷外的气态有机化合物氧化掉的效率。

4 概述

分析仪是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入火焰时,在高温下产生化学电离,电离产生的离子流与进入火焰的有机化合物量成正比,根据信号的大小对有机物进行定量分析。广泛用于环境空气及污染源中有机物气体的浓度的检测。

分析仪由样品采集传输单元、样品处理单元、分析单元、数据处理单元及辅助设备等组成。

5 计量特性

分析仪计量特性见表 1。

6 校准条件

6.1 校准环境条件:

温度: (0~40) ℃;

相对湿度: ≤85%;

大气压: (80~106) kPa。

1

+ 4			L+ J.4L
表	เน	一重?	持性

计量特性要求	技术指标
示值误差	$\pm 10\%$
重复性	≤2%
响应时间*	≤10s
转化效率**	≥95%

- 注: 1. 以上所有指标不是用于合格性判别,仅供参考;
 - 2. 分析周期为固定时间的仪器标*的项目不做:
 - 3. 非催化氧化-氢火焰离子化法的仪器标**的项目不做。

6.2 测量标准及其他设备

标准气体均应使用国家有证标准物质,其他设备应有效溯源。

- 6.2.1 空气中甲烷、丙烷气体标准物质:不确定度不大于 3%,k=2。标准气体可稀释获得,稀释获得的标准气体不确定度不大于 3%,k=2。
- 6.2.2 零气: 除烃空气, 其中碳氢化合物浓度不大于 0.3mg/m³。
- 6.2.3 秒表: 分度值不大于 0.1s。

7 校准项目和校准方法

7.1 示值误差

按照分析仪使用说明书或客户的要求确定分析仪的使用量程,并对分析仪进行预热稳定以及零点和量程的校准。依次通入浓度为使用量程 20%、50%和 80%左右的空气中甲烷气体标准物质,读数稳定后分别记录分析仪示值,再通入零气等待分析仪示值回零。重复上述步骤 3 次,按公式(1)分别计算示值误差 Δ_c 。

$$\Delta_{\rm C} = \frac{\overline{A} - A_{\rm S}}{A_{\rm S}} \times 100\% \tag{1}$$

式中:

 $\Delta_{\rm C}$ —浓度示值误差,%:

 \overline{A} —甲烷三次示值的算术平均值, μ mol/mol 或 mg/m³;

A。—标准气体的浓度,μmol/mol 或 mg/m³。

7.2 重复性

待测分析仪运行稳定后,通入浓度为使用量程 50%的空气中甲烷气体标准物质,读

数稳定后记录分析仪的示值 A_i ,重复上述测试操作 6 次,按公式(2)计算重复性 S_r 。

$$S_{\rm r} = \frac{1}{\overline{A}} \times \sqrt{\frac{\sum_{i=1}^{n} (A_{i} - \overline{A})^{2}}{n-1}} \times 100\%$$
 (2)

式中:

 A_i — 仪器第 i 次测量的显示值, μ mol/mol 或 mg/m³;

 \overline{A} —仪器 n 次测量结果的算数平均值, μ mol/mol 或 mg/m³;

n—测量次数(n≥6)。

7.3 转化效率

待测分析仪运行稳定后, 通入校准气进行零点和量程校正。

通入浓度约为使用量程(50%~80%)的丙烷标准气体,待数值稳定后记录甲烷的示值,重复 3 次,按公式(3)计算待测仪器的转化效率。

$$\eta = \left(1 - \frac{C}{D}\right) \times 100\% \tag{3}$$

式中:

n—转化效率,%:

C—分析仪的甲烷示值 3 次测量平均值, μ mol/mol 或 mg/m³;

D—丙烷标准气体浓度值, μ mol/mol 或 mg/m³。

7.4 响应时间

通入浓度约为使用量程 50%的标准气体,稳定后读取仪器显示值,撤去标准气体,通入零点气,分析仪显示值稳定后,再通入上述浓度的标准气,同时用秒表记录从通入标准气体瞬时起到稳定值的 90%时的时间。重复测量 3 次,取 3 次记录时间的算术平均值作为仪器的响应时间。

8 校准结果表达

校准结果应在校准证书上反映。校准证书应至少包括以下信息:

- a)标题, "校准证书";
- b) 实验室名称和地址;

- c) 进行校准的地点(如果与实验室的地址不同);
- d) 证书或报告的唯一性标识(如编号),每页及总页数的标识;
- e) 客户的名称和地址;
- f)被校对象的描述和明确标识:
- g) 进行校准的日期,如果与校准结果的有效性和应用有关时,应说明被校对象的接收日期:
- h) 校准所依据的技术规范的标识,包括名称及代号;
- i) 本次校准所用测量标准的溯源性及有效性说明:
- j) 校准环境的描述;
- k) 校准结果及其测量不确定度的说明:
- 1) 对校准规范偏离的说明:
- m) 校准证书签发人的签名、职务或等效标识以及签发日期;
- n) 校准结果仅对被校对象有效的声明;
- o) 未经实验室书面批准, 不得部分复制证书或报告的声明。

9 复校时间间隔

建议复校时间间隔一般不超过1年,如果分析仪经维修、更换重要部件或对分析仪性能有怀疑时,应随时校准。

由于复校时间间隔的长短是由分析仪的使用情况、使用者、分析仪本身质量等诸因素所决定的,因此,送校单位也可根据实际使用情况自主决定复校时间间隔。

附录 A

示值误差不确定度评定示例

A.1 校准方法简述与数学模型

按本规范 6.1 条进行示值误差的校准。按式 A.1 计算分析仪的示值误差。

$$\Delta X = \frac{\overline{X} - X_0}{X_0} \times 100\% \tag{A.1}$$

式中: ΔX ----被校准分析仪示值误差, %:

 \overline{X} ----被校准分析仪示值算数平均值,, μ mol/mol;

 X_0 ----CH₄气体标准物质浓度值, μ mol/mol。

A.2 标准不确定度来源分析及评定

A.2.1 分析仪测量重复性的不确定读分析与评定

被校准分析仪示值 \overline{X} 的不确定度主要来源于仪器的测量重复性,通过连续测量的方式可以得到仪器示值的测量列。测量重复性对仪器测量结果的影响使用 A 类方法进行不确定度的分析评定。

实验选取一台满量程值为 2000×10^{-6} 摩尔分数的仪器进行测量。用高精度动态配气装置将浓度为 5000×10^{-6} mol/mol 不确定度为 $U_{\rm rel}=1\%$,k=2 的 CH_4 气体标准物质分别配出 400×10^{-6} 、 1000×10^{-6} 、 1600×10^{-6} 摩尔分数的甲烷标准气体,在同一环境、相同实验条件下对仪器进行连续6次测量,得到不同浓度点仪器示值的测量列,如表A.1 所示。

标准气体浓度值/10-6 序号

表 A. 1 仪器不同浓度点测量值

根据贝塞尔公式:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$s(\overline{X}) = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

由表 A.1 的测量数据计算得到上述 3 个浓度点的算数平均值以及单次实验标准偏差结果, 如表 A.2 所示。

标准气体浓度值/10-6	测量列平均值/10-6	单次实验标准偏差/10-6
400	401.3	0.82
1000	1017.2	5.40
1600	1595.2	4.49

表 A. 2 测量列算数平均值及单次实验标准偏差计算结果

故选取表 2 中单次实验标准偏差最大的浓度点1000×10⁶的测量列作为仪器测量重复性引入的不确定度,则

$$s = 5.40 \times 10^{-6}$$

根据实际测量情况,试验要在重复条件下连续进行3次,且以3次测量结果的算数平均值作为试验结果,则仪器测量引入的不确定度

$$u(\overline{X}) = \frac{s}{\sqrt{3}} = 1.7 \times 10^{-6}$$

A.2.2 高精度动态配气系统配比标准气体引入的不确定度分析与评定

该试验中,校准用标准气体是经高精度动态配气装置稀释后得到的。

多气体动态校准仪中有两路流量质量流量控制器(A 路和 B 路),进行稀释时,控制流量分别为 F_A , F_B 按照下面公式计算稀释后的目标气体浓度值:

$$C = \frac{F_{\rm A}}{F_{\rm A} + F_{\rm B}} C_{\rm S}$$

式中: C—稀释后的目标气体浓度值,×10-6mol/mol;

 C_s —稀释前钢瓶装标准气体的浓度值, $\times 10^{-6}$ mol/mol;

 F_{A} —A 路流量控制器的流量显示值,L/min;

 F_B —B 路流量控制器的流量显示值,L/min。

假设
$$X = \frac{F_A}{F_B + F_A}$$
 ,则上述公式变为: $C = X \times C_S$ 所以 $u^2(C) = (\frac{\partial(C)}{\partial(C_S)})^2 u^2(C_S) + (\frac{\partial(C)}{\partial(X)})^2 u^2(X)$

可见,稀释后的目标气体量值的不确定度有两部分组成:一部分来自稀释前气体标准物质的不确定度,另一部分来自稀释装置引入的不确定度。

A.2.2.1 气体标准物质引入不确定度分量 $u(C_s)$

中国计量科学研究院购买的空气中甲烷气体标准物质,相对扩展不确定度 $U_{rel}=1\%$,k=2。则有:

$$u(C_{\rm S}) = \frac{1\% \times 5000}{2} = 25$$

A.2.2.2 稀释装置引入不确定度分量u(X)

曲公式
$$X = \frac{F_{A}}{F_{B} + F_{B}}$$
 可知:
$$u^{2}(X) = \left[\frac{1}{F_{A} + F_{B}} - \frac{F_{A}}{(F_{A} + F_{B})^{2}}\right]^{2} u^{2}(F_{A}) + \left[-\frac{F_{A}}{(F_{A} + F_{B})^{2}}\right]^{2} u^{2}(F_{B})$$

空气中甲烷气体标准物质,标称值为 5000×10^{-6} mol/mol,目标气体浓度值为 1000×10^{-6} mol/mol。计算出 $X=\frac{1}{5}$ 。取 A 路质量流量控制器控制流量为 $F_A=0.4$ L/min,则 $F_B=1.6$ L/min。

A.2.2.2.1 A 路流量控制引入的不确定度 $u(F_{\scriptscriptstyle m A})$

(a) 重复性引入的不确定度 $u_1(F_A)$

使用标准流量测量装置对 A 路流量进行连续 10 次测量,得到如下数据,单位为(L/min):

 $0.408 \quad 0.410 \quad 0.409 \quad 0.409 \quad 0.411 \quad 0.412 \quad 0.409 \quad 0.407 \quad 0.408 \quad 0.411$

$$u_1(F_A) = s(X) = \sqrt{\frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}} = 0.0016 \text{ L/min}$$

(b) 流量计示值误差引入的不确定度 $u_2(F_A)$

流量计最大允许误差为±0.5%, 按均匀分布计算:

$$u_2(F_A) = \frac{0.4 \times 0.5\%}{\sqrt{3}} = 0.0012 \text{ L/min}$$

 $u(F_A) = \sqrt{u_1^2(F_A) + u_2^2(F_A)} = 0.002 \text{ L/min}$

A.2.2.2.2 B 路流量控制引入的不确定度 $u(F_B)$

(a) 重复性引入的不确定度 $u_1(F_{\rm B})$

使用标准流量测量装置对 B 路流量进行连续 10 次测量,得到如下数据,单位为(L/min):

1.613 1.608 1.611 1.612 1.615 1.609 1.613 1.607 1.610 1.609

$$u_1(F_B) = s(X) = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}} = 0.0025 \text{ L/min}$$

(b) 流量计示值误差引入的不确定度 $u_2(F_{\rm B})$

流量计最大允许误差为±0.5%, 按均匀分布计算:

$$u(F_{\rm B}) = \frac{1.6 \times 0.5\%}{\sqrt{3}} = 0.0047 \text{ L/min}$$

$$u(F_{\rm B}) = \sqrt{u_1^2(F_{\rm B}) + u_2^2(F_{\rm B})} = 0.0053 \text{ L/min}$$

$$u(X) = \sqrt{\left[\frac{1}{F_{\rm A} + F_{\rm B}} - \frac{F_{\rm A}}{(F_{\rm A} + F_{\rm B})^2}\right]^2 u^2(F_{\rm A}) + \left[-\frac{F_{\rm A}}{(F_{\rm A} + F_{\rm B})^2}\right]^2 u^2(F_{\rm B})} = 0.10\%$$

$$u(C) = \sqrt{\left(\frac{\partial(C)}{\partial(C_{\rm S})}\right)^2 u^2(C_{\rm S}) + \left(\frac{\partial(C)}{\partial(X)}\right)^2 u^2(X)} = \sqrt{X^2 u^2(C_{\rm S}) + C_{\rm S}^2 u^2(X)} = 7.07$$

A.3.不确定度评定结果

A.3.1 标准不确定度分量汇总

标准不确定度汇总表见表 A.3。

表 A. 3 标准不确定度分量汇总表

标准不确定度	不确定度来源	标准不确定度值
$u(\overline{X})$	测量重复性引入的不确定度	1.7×10 ⁻⁶
u (C)	配气系统配比标准气体引入的不确定度	7.1×10 ⁻⁶

A.3.2 合成标准不确定度

构成标准不确定度的两个分量 \overline{X} 与 C ,二者彼此独立不相关,因此可按下式计算得到合成不确定度:

$$u_{c}(\Delta X) = \sqrt{\frac{1}{C_{0}^{2}} \times u^{2}(\overline{X}) + (-\frac{\overline{X}}{C_{0}^{2}})^{2} \times u^{2}(C)} = 0.74\%$$

A.3.3 扩展不确定度的评定

取包含因子 k=2,则扩展不确定度为: $U_{\rm rel} = k \times u_{\rm c}(\Delta X) = 2 \times 0.74 = 1.5\%$

附录 B

总烃、甲烷和非甲烷总烃分析仪校准记录(参考)

										第	页	共	页
客户名称	尔					客户地	址						
仪器名称	尔				仪器型号			证书:	编号				
生产厂家	家				仪器编号			温	度				
校准地点	点							湿	度				
校准依据	居												
名称	型号热格	9月 编	号	测量范围	不确定度//			E/校准 5编号	有效	対期至	上级	数溯源 名称	
1. 仪器的记	周整	ο.	正常;	□其他:									_
2. 示值误差	差							使	用量程	<u>:</u>			
标准气浓度				测量值(µmol/mol) 示值误差					测	测量结果不			
(µmol/mol)		1	Į	2	3	平均值			(%)		确定度		
3. 重复性						1					<u> </u>		
标准气体》	 皮度信				测量值	(umol/mol	1)					重复	

标准气体浓度值	测量值(μmol/mol)						重复性
(µmol/mol)	1	2	3	4	5	6	(%)

4. 转化效率

标准气体浓度值	测量值(µmol/mol)						
(µmol/mol)	1	2	3	转化效率			

5. 响应时间

标准气体浓度值	时间 (s)						
(µmol/mol)	1	2	3	响应时间			

附录 C

总烃、甲烷和非甲烷总烃分析仪校准证书(内页)格式(参考)

校准环境: 温度: ℃;相对湿度: %;大气压: kPa

校准结果

一、校准结果:

标准值(μmol/mol)	仪器测量值(μmol/mol)	示值误差(%)	示值误差测量结果 的不确定度	

二、重复性: %

三、转化效率: %

四、响应时间: s

以下空白